What is a natural syntactic model for frame-semantic composition?

Timm Lichte, Laura Kallmeyer & Rainer Osswald

University of Düsseldorf, Germany

CTF14, August 26, 2014
Overview

“natural” syntax counterpart for frames?

properties of frames properties of grammars

EDL vs. LDL
(extended domain of locality) (limited domain of locality)

EDL: case studies in LTAG
(directed motion construction, secondary predicates)
Sparse and transparent in terms of the syntax-semantics interface, and similar with respect to compositional aspects:

- syntax and semantics are **homomorphic**
- classical example:

 \[
 \lambda y \lambda x. \text{love}'(x, y) + V \setminus NP/\NP
 \]

 Currying, functional application
 “ordered argument systems” (Dowty, 1989)

frame semantics + ???
Formal properties of frame semantics

Frames are formalized as **extended typed feature structures** (Petersen, 2007; Kallmeyer & Osswald, 2013)

- no inherent ordering on the attributes of the same node
- no overt/explicit distinction between arguments and modifiers

\[
\begin{bmatrix}
\text{locomotion} \\
\text{ACTOR} \\
\text{MOVER} \\
\text{PATH} \\
\text{MANNER} \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{locomotion} \\
\text{ACTOR} \\
\text{MOVER} \\
\text{PATH} \\
\text{MANNER} \\
\text{path} \\
\text{walking} \\
\end{bmatrix}
\]
Formal properties of frame semantics

Frames are formalized as **extended typed feature structures** (Petersen, 2007; Kallmeyer & Osswald, 2013)

- no inherent ordering on the attributes of the same node
- no overt/explicit distinction between arguments and modifiers

Frames are composed by unification, not by functional application.
Formal properties of grammars

Fundamental distinction between two classes of grammar frameworks:

- limited domain of locality (LDL)
- extended domain of locality (EDL)

Another recently discussed distinction that is orthogonal:

- lexical vs. phrasal (Müller & Wechsler, 2014)
Formal properties of grammars: LDL

LDL (limited domain of locality)

- predetermined derivational order (specified in the lexicon)
- indicator: valency lists, which are stepwise processed
- CG, (binarized) HPSG, SBCG, MG

```
V[ SUBCAT ⟨ ⟩ ]
  C        H
   2 NP
     John

AP
  sometimes

V[ SUBCAT ⟨2⟩ ]
  M        H
    V[ SUBCAT ⟨2⟩ ]
      H        C
        V[ SUBCAT ⟨2,1⟩ ]
          H
            V[ SUBCAT ⟨ ⟩ ]
              1 PP
                walks

into the house
```
What are ordered valency lists good for?

Implement the obliqueness hierarchy (Keenan & Comrie, 1977)

subject ⇒ direct object ⇒ indirect object ⇒ obliques ⇒ genitives ⇒ objects of comparison

List of applications (Müller, 2007, §3.1)

- binding theory
- passive
- ellipsis
- free relative clauses
- secondary predicates
Formal properties of grammars: EDL

EDL (extended domain of locality)
- no predetermined derivational order
- capability to immediately access arbitrarily distant parts of a sentence within one lexical entry or syntactic rule
- LTAG, RRG, some versions of CxG, Dependency Grammar

LTAG:
```
S
  |--- NP
  |     |--- VP
  |     |     |--- VP
  |     |     |     |--- V
  |     |     |     |   walks
```

RRG:
```
CLAUSE
  |--- CORE
  |   |--- RP
  |   |     |--- NUC
  |   |     |     |--- PP
  |   |     |     |   walks
  |   |--- PRED
  |     |--- V
  |     |   walks
```
Formal properties of grammars: EDL

EDL (extended domain of locality)
- no predetermined derivational order
- capability to immediately access arbitrarily distant parts of a sentence within one lexical entry or syntactic rule
- LTAG, RRG, *some* versions of CxG, Dependency Grammar

CxG (Goldberg, 2013, 2014):

\[
\begin{align*}
\text{intransitive motion construction} \\
\text{Form: } & V \ {\text{Subj, Oblique}_{\text{path}}} \\
\text{Function: } & \text{move agent path}
\end{align*}
\]
Ingredients:

- a set of **elementary trees**
- two combinatorial operations:
 - substitution (replace a leaf node)
 - adjunction (replace an inner node)

EDL ⇒ the attachment order of the NP and the PP is independent!
Kallmeyer & Osswald (2013):

- lexicon: pairs of elementary trees and base-labelled typed feature structures
- Elementary trees are enriched with **interface features**, which contain base labels from the frame representation.
 - unification of interface features \leadsto identification of base labels
- parallel composition of derived trees and larger frames

```
S_{E=\emptyset}[]
    NP_{I=1}[E=\emptyset]  VP_{E=\emptyset}[I=\emptyset, E=\emptyset]
        VP_{E=\emptyset}  PP_{I=2, E=\emptyset}[I=\emptyset]
                        VP_{E=\emptyset}
                            V_{E=\emptyset}[I=\emptyset]
                                walked
```

```
[bounded-locomotion]
  ACTOR  1
  MOVER  1
  GOAL   2
  PATH   path
  MANNER walking
```
(1) John walked into the house.
Lexical entries can be further decomposed/factorized using **metagrammars** (e.g. XMG, see the other talk!).

- walked

\[
\begin{align*}
S_{[E=\square]} \\
NP_{[I=\square]} & VP_{[E=\square]} \\
VP_{[E=\square]} & PP_{[I=\square,E=\square]} \\
V_\circ_{[E=\square]} \\
\text{walked}
\end{align*}
\]

\[
\begin{bmatrix}
bounded-locomotion \\
\text{actor} & \square \\
\text{mover} & \square \\
\text{goal} & \square \\
\text{path} & path
\end{bmatrix}
\]

\[
\begin{bmatrix}
event \\
\text{actor} & \square \\
\text{goal} & \square \\
\text{path} & path
\end{bmatrix}
\]

\[
\begin{bmatrix}
bounded-translocation \\
\text{goal} & \square \\
\text{path} & path
\end{bmatrix}
\]
Comming back to EDL vs. LDL

They are different:

- representation of valency; order of derivation
 - EDL with set-like valency, LDL with list-like valency
- transparency of the syntax-semantics interface
 - EDL more transparent than LDL

But are there fundamentally different ramifications?

- depictive secondary predicates
 - probably yes: see next slides.
- passive (probably no)
- binding theory
- ellipsis
- free relative clauses
- idioms, multi-word expressions
Depictive secondary predicates

A case of **cross modification**: the modifier is disconnected from the modified phrase:

(2) He$_i$ walked into the house naked$_i$.

What are the scope possibilities of depictives?

EDL-analysis (LTAG, on the next slides):
- The depictive can ‘see’ the whole frame of the matrix sentence.
- But the valency status of frame components is **not** accessible!

LDL-analysis (HPSG, Müller 2002; Müller 2008):
- The depictive only ‘sees’ the members of the valency list (in **SBCAT**).
- non-cancellation approach: arguments are not removed during the derivation, but they remain there as “ghosts”
(2) He\textsubscript{i} walked into the house naked\textsubscript{i}.
(3) dass sie ihn nackt beobachtet
that she him naked watches

What is the set of valid target attributes? And how to represent it?
Depictive secondary predicates

Unfortunately, not every attribute seems to be accessible:

(4) weil Karl_i [neben Maria_j] nackt_i/*j schlief
because Karl next.to Maria naked slept

But also the valency-based generalization in Müller (2002) seems problematic: “Depictives can target exactly the arguments from the valency list.”

- The target may be unrealized:

(5) Hier wird nackt geschlafen.
here is naked slept

- The target can be inside an argument?

(6) [Die Untersuchung an dem Patienten_i] wird nur nüchtern_i durchgeführt.
the examination of the patient is only sober performed
Depictive secondary predicates

- Not every argument is a good target?

(7) [Noch am Boden liegend], sei [auf ihn] eingetreten worden.
still on.the floor lying be on him PART.kicked got
(Müller, 2002, (422))

(8) In das Haus ging er ungelüftet.
in the house walked he unaired

- The target can be a non-argument?

(9) Deiner Oma bis du [ohne Gehhilfe] zu schnell.
your.DAT grandma are you without walker too fast

(10) In der Wohnung hält man es nur gut gelüftet aus.
in the appartment bear one it only well aired PART

The exact scope potential of depictives still is an open question.
Summary

“natural” syntax counterpart for frames?

properties of frames

properties of grammars

EDL vs. LDL
(extended domain of locality) (limited domain of locality)

EDL: case studies in LTAG
(directed motion construction, secondary predicates)

